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reactors 

An electrochemical technique has been employed for determining the hydrodynamic characteristics and 
reaction rate constants for the bipolar trickle reactor as a whole. Theoretical descriptions of modified 
flow models have been derived and experimental data have been fitted to these descriptions both in the 
time and Laplace domains. A model with both fast and slow-moving phases gives excellent agreement 
with experimental curves, although a simple dispersion model is seen to be a reasonable approximation. 
Differences due to changes in the boundary conditions are shown to be small. The rate constant for a 
first order reaction has been found to be linearly dependent on the film Reynolds number, suggesting 
that mass transfer to the active areas within the reactor dominates the measured performance for 
reactions such as copper deposition. 
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number of active (or inactive) 
zones in zoned reactor 
length of zoned reactor (cm) 
length of active part of zoned re- 
actor (cm) 
length of inactive part of zoned 
reactor (cm) 
Bessel function of zero order 
first order reaction rate constant 
(s -1 ) 
mass transfer coefficient between 
fast and slow moving phases 
(cm s -1) 
mass-transfer coefficient (cm s -i ) 
length of the reactor (cm) 
number of electrons transferred in 
an electrochemical reaction 
number of the rings in a single 
layer of  packed column 
Peclet number (uL/D) 
amount of tracer injected (tool) 
reaction rate per unit area (tool 
cm-2 s-1 ) 
inner and outer radii of Raschig 
ring, respectively 
film Reynolds number 
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contact area per unit length be- 
tween fast and slow-moving phase 
time (s) 
mean time (s) 
mean liquid velocity (cm s -1 ) 
liquid volumetric flow rate 
(cm 3 s -1 ) 

spatial reactor co-ordinate (cm) 

[( 1 the parameter s +~-~]  ~ i ~ j  

theparameter [( s+k+u2]ln]h 4D] ] 

the parameter u/(2D) 
region where the concentration 
perturbation occurs (cm) 
electrode overpotential (V) 
roots of Equation 23 
kinematic viscosity (cm 2 s -1 ) 
specific solution resistivity (~2 cm) 
variance (s 2) 
residence time (s) 
potential in the solution phase (V) 
fraction of the reactive area of a 
bipolar reactor (dimensionless) 

1. Introduction 

In the previous paper [1 ] we have discussed the 
steady state polarization behaviour of the bipolar 
trickle tower at a limiting condition when concen- 
tration changes in the bulk of the solution may be 
neglected. It was shown that for a reversible re- 
action this behaviour could be interpreted in 
terms of a one-dimensional lumped parameter 
model governed by 

h d2~s h d2~ 
- - nFr (1) 

p dx 2 p d x  2 

where h is the film thickness (cm), p is the specific 
resistivity of  the solution (~2 cm), es the potential 
in the solution, ~ the overpotential, nF the num- 
ber of Faradays transferred per mole of reactant 
and r is reaction rate per unit area (mol cm -2 s -1 ). 

The performance of a reactor equally depends 
on the mixing behaviour of the fluid elements and 
it is therefore important to obtain an adequate de- 
scription in terms of a suitable model. In reaction 
engineering these models have been based either 
on an assembly of discrete units [2-5] (exempli- 

fled at the simplest level by a chain of perfect 
mixers connected by sections with plug flow) or 
on continuum models applied to the concentration 
C (mol cm -a) of one species in the stream [6-12].  
For example a simple one-dimensional dispersion 
model is described by 

aC 02C aC 
a t  = D~--~--- U~x- x (2) 

where D is the dispersion coefficient (cm 2 s -1 ) 
and u is the mean liquid velocity (cm s -1 ).* In this 
investigation we apply this second approach 
exclusively. 

A particularly useful method for characterizing 
reactors is the tracer technique. The reactor is 
treated as a 'black box'  and the effect of the in- 
ternal mixing processes on a step or delta function 
concentration perturbation at the inlet is moni- 
tored at the outlet. In this paper we apply an 
electrochemical analogue of this method to the 
characterization of the bipolar trickle tower 
[ 13, 14]. The objective is the identification of a 
model sufficiently detailed to account for the 
behaviour of the reactor. 

In the presence of a first order reaction, 
Equation 2 is modified to 

aC a2C ~C r 
- - =  D~x2--U~x Ot h 

(3) 

(4) r = kC 

where k is an appropriate rate constant (cm s -1 ). 
Equation 3 is written per unit length of wetted 
perimeter. A major difference between conven- 
tional reaction engineering and electrochemical 
reaction engineering lies in the coupling of equa- 
tions such as Equation 3 with Equation 1, i.e. in 
the distribution of reaction in space in view of the 
distribution of potential. Only in the case of mass 
transfer control throughout the reactor do these 
equations become uncoupled so that Equation 3 
may be solved independently of Equation 1. In 
that case 

k = kin (5) 

where k m is the mass transfer coefficient (cm s -1 ). 

$ 
The coefficient D arises from the random mixing of 

fluid elements; it includes the process of molecular dif- 
fusion but normally exceeds the diffusion coefficient by 
several orders of  magnitude. 
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This case therefore is the other extreme limit as 
compared to that discussed in the previous papers. 
There has been considerable discussion in the 
literature [8, 16-18] concerning the correct for- 
mulation of reactor models and, indeed, of the 
appropriate choice of model for any particular 
system. 

In this paper we first discuss analytical ap- 
proaches to the flow modelling of electrochemical 
reactors (with particular attention to the model- 
ling of the bipolar trickle system) and present data 
indicating the relative importance of the nature of 
the model and the nature of its boundary con- 
ditions. The succeeding paper presents an analysis 
of the reactor performance using a simple disper- 
sion model for a wide range of operating 
characteristics. 

2. Analysis of flow models 

2.1. Infinite f low channel 

A general specification of a reactor in an infinite 
channel is illustrated in Fig. 1. The delta function 
perturbation has usually been introduced at the 
boundary x = 0 but here we prefer to consider the 
perturbation as an initial condition over a short 
region of space -- A < x < 0. The nature of the 
boundary condition at x = 0 and the other bound- 
ary of  the reactor, x = L,has been much discussed. 
It can be seen that for the model in Fig. 1 the dis- 
persion coefficient has been assumed to be uni- 
form throughout space and this will apply to those 
designs where the fore and after sections of the 
reactor have a packing identical to that within the 
reactor, i.e. an identical flow regime. The Laplace 
transform of the solution of the system of equa- 

tions in Fig. 1 for the case k = 0 for the initial 
and boundary conditions shown may be obtained 
directly; at x = L (the position of the detector) 

= C ~  
C 2  ~-s \ - - - ~ )  [ 1 -- exp(7-e)A] exp [(7 -- e)L] 

where 

(6) 

1/2 

OL = S + D1/2  (7 )  

u (8) 
7 -  

2D 

and s is the variable of the transformation. As A -+ 
0 the perturbation takes the form of a delta 
function and 

C 2  --~ c ~  (0~2 - - 7 2 )  exp[ (7 - - a )L]  (9) 
2s  o~ 

C0A 
---- X 

2L 
[(Pe)v] 1/2 exp {(Pe)/2 -- [s + (ee)/(4r)] 1/2 [(ee)r] 1/2 } 

[S + (Pe)/(47-)] 1/2 
(10) 

where the Peclet number is defined by 

(Pe) = uI4D (11) 

and the residence time by 

r = L/u. (12) 

C~ is the amount of material, Q, injected at t = 
0. Equation 10 therefore inverts to 

Q [ (Be) l  1': (-(S'e)[1-(tlr)] 2 } 
C2 = ~ [Tr(tlr) J exp {- 7(t~r7 

(13) 

t [ 

I 3Co a~Co OCo I 
i ~ T = D ~  "-f ix ' 
L . . . . . . . . . . . . . . . . .  • 

x = - - A  x = O  x = L  x = ~  

~C~ 02C1 OC~ 
~ -  - D ax ~ u 3--x- 

I i 
3C; ~2C2 ~C2 k C I ac3 ~2c3 ac3 I 
oTt = D ~ - " o T - ~  -~  ' ~ T = D ~ G  v " G -  , 

j . . . . . . . . . . . . . . .  i 

- - = < x < - - A  - - A < x < 0  0 < x < L  L < x < ~  

Co = 0; t  = 0 CI = C ~  = 0 C2 = 0;t  = 0 C3 = 0; t  = 0 

X = - ~  X = A x = 0  

Co = 0 ; t > 0  Co = C l ; t > 0  CI = C 2 ; t > 0  

0COax aca ~xx3Ca ~ x  2 = a ~ - ; t  > 0 = ; t > O  

Fig. 1. Scheme of  an infinite f low reactor with its boundary  conditions. 

x = L  

C2 = C 3 ; t > O  

3C2 ~C3 
V = ~ ; t > o  

C3 = O;t>o 
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an expression which has been derived in a number 
of ways [6, 7]. Expressions such as Equations 10 
and 13 are often written in terms of the area of 
the transient at the outlet of the reactor. This is 
given by the inverse of C2/s (or C3/s) as s -+ 0, i.e. 

j7 C2 dt - C~ (14) 
L 

Evidently 

g 

C~ Q Jo 
C2 dt 

- ( 1 5 )  
L L r 

and this is frequently written as C~ in the 
literature. 

In the presence of the reaction we obtain 

- 2L [(ee)r]~/2 1/2S+h (-~r) x 

exp 4r ] h ~ - r /  x 

cosh{[s+k+(P~)]l/2[(Pe)r]'/2) 

+[s+ 
2hi 1/2 -t 

+ (Pe) sinh[[s+ k +  [[ h 4r ] [(Pe)r]m}) (16) 

2.2 Semi-infinite flow channel 

It is frequently convenient to simplify the treat- 
ment of the boundary at x = 0 particularly in the 
analysis of more complicated models of the re- 
actor. By assuming D = 0 in the fore section of the 
reactor (-- o0 < x < 0) we can ignore this fore sec- 
tion and replace the delta function perturbation 
by a step function 

C2 = C~ = 0, t > 0 (17) 

The response at x = L to the delta function per- 
turbation at x = 0 is then obtained by differentia- 
ting the solution in real time or multiplying the 
Laplace transform by s. Here we obtain 

l " h 4r J [(Pe)r] 1/2 
(1) 

and in real time 

C2 = ~ [;r(t/r)~] exp(  4(t/r) - - - -  

(19) 

The relative simplicity of Equation 18 as com- 
pared to Equation 16 will be evident. The validity 
of using this model depends on the extent to which 
the experimental reactor is sensitive to the exact 
conditions in the fore section or to the conditions 
within the reactor itself. 

The Laplace transforms of the solutions of a 
number of general models where the dispersion 
coefficients in the fore and after sections differ 
from that in the reactor section have been tabu- 
lated [17]. In general it will be difficult, however, 
to fit the large number of parameters required by 
such models and here we have instead focused 
attention on the conditions within the reactor. A 
possible limiting pattern of behaviour is that when 
dispersion in the after section is also zero, then the 
boundary condition at x = L may be replaced by 
the Danckwerts boundary condition [8] 

OC: = O,x = L, t  > 0". 
3x 

Here we obtain 

c ~  k u211,2 
if2 = ~ ) T  + - ~ +  ~--~] exp 

~ T i  + + 4 D  cosh + + ~  

k u s t '/2 L + - - +  
- T s i n h  s h 4-D] ~T/~ 

(21) 
or  

Q = 2C~ \ h  t x 

0 0an exp (--DO 2 t) ] 
gL ~ +-2Z/27D~ ~2~7(4D2) ] sin&/; 

n = l  (ee) 

(20) 

uL) 
i5 • 
112 

L 
5ia+ 

-1 

where -+ On are the roots of 

uL 
OnLcotOnL + - - =  0 

2D 

2.3. Fast and slow moving phases 

(23) 

Models in which the flow is described by a single 

This boundary  condit ion is somet imes wri t ten in a 
different form but  the  effect  is always tha t  o f  'closing the  
channel ' .  
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moving 'phase' are unlikely to apply to electro- 
chemical reactors in general, and especially so to 
structures such as the bipolar trickle tower. This 
will certainly contain regions of 'stagnant' electro- 
lyte and at the next level of complexity we have to 
take into account the extents Aa and A= (cm) of 
the fast and stagnant 'phases',t their area of con- 
tact S per unit length and the rate constant k'  (cm 
s -1 ) for exchange of material between these phases. 
For the semi4nfinite channel (in the absence of re- 
action) we therefore solve 

~C2 ~Zc2 ~C2 
- D - - - - u  - - - -  3t 3x z Ox 

k~'S ( Q  _ C4) 

(24) 

dC4 k'S 
- (C2 - - C 4 )  

dt A2 

where 6"4 is the concentration in the stagnant 
phase. We apply the initial conditions 

C2 = 0,0 < x  < oo, t = 0 

C4 = 0,0 < x  < % t  = 0 

For the infinite channel 

Ca = (C~ L) [(Pe)r] 1/2 exp { 
(Re) 

2 
% 

( k , S / A ~ ) + s + S + - - 4 7 ]  [(Pe)rl in x 

+ 4r] [(k'S/A2)+s s 4r ]  )(31) 

Finally, if we allow for first order reactions with 
rate constants k21h (s -1 ) and k41h (S -1 ) in the two 
phases we obtain for the semi-infinite channel 

(25) C2 = C~ exp {(P~ ) 

[(k 'S lA1)(s+kalh)  +s  +/:z + (Pe)] 'n 
[(k~]-~2) + s + k4/h h ~ J 

(26) } 
x [(Pe)r] ,lz (32) 

(27) 
2.4. Zoned reactor 

and obtain* 

t(Pe) [ (k'SIAi)s + (S>e)]"~ • 

x [(Pe)rl "~ } (28) 
% 

) 

Inverted forms of equations such as Equation 28 
are complicated; here we obtain 

C2 = C~ exP{(~ ) go'St 

f o t j o [ 2 k ' 2 S  2 ] 
- -~ lAJ( t - -y ) l lZ l  } g(y)dy (29) 

whereJo is the Bessel function of zero order and 
gO') is determined by 

(Pe) [ (Pe)r 
g(y) - 4zrr(t/r)3 exp t -4t 

k'S k'S + t (30) 
At A2 

t We follow the terminology in the literature [9] ; it 
should be noted that the two regions contain the identical 
electrolyte. 

* For a model with the Danckwerts boundary condition 
atx =L see [9]. 

In the analysis of reactors in the presence of a first 
order reaction (equations such as Equation 16, 18 
and 32) the rate constant k is a space-averaged 
quantity. In practice the distribution of potential 
within the reactor will produce an inhomogeneous 
distribution of reaction and this will be true in 
particular for bipolar reactors. It will be evident 
that the reaction rate is zero over a substantial part 
of the reactor and the effects of this type of in- 
homogeneity must be clearly distinguished from 
that, for example, due to regions of stagnation. 

It has already been pointed out that the simul- 
taneous solution of Equations 1 and 3 poses great 
difficulties. A simplified model has been applied to 
steady state experiments under plug flow con- 
ditions [19, 20] which takes into account the very 
rapid variation of the electrochemical reaction rate 
with potential: the reaction is assumed to be under 
mass transfer control over part of the surfaces of 
the reactor and zero elsewhere. Here we assume 
the simplest case: a semi-infinite channel with 
uniform dispersion along the axis. 

The system of equations applicable to the 
active (nb < x < nb + a) and inactive (nb + a < 
x < (n + 1) b) zones is illustrated in Fig. 2 and the 
set of general solutions in Fig. 3. Here 
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0 < x < a  

a < x < b  

b < x < b + a  

b + a < x < 2 b  

2 b < x < 2 b + a  

2 b + a < x < 3 b  

]b < x  <jb + a 

] b + a < x < ~  

x = O  

A 

1 

A 

I 

3C 1 02C1 3C~ k C 
~?  = o ~x ~ - .  G - - ;  ' 
3C 2 32C2 3C 2 
~ -  = D 3x ~ - -u  0x- 

0Ca = D 3~C~ 3C3 k 
~t Ox ~ -u  ~ ,~ C3 

~C4 UC4 ~C4 
~-t = ~ -~  ~- 

3Cs O~Cs OCs k 

~C 6 02C6 OC 6 
T i t  = ~ ~ - " G-~ 

~)Co3+x) = DO2C(zs+O_u 8C(2j§ ks~, 
~ -  ~x 2 3x h ~<2s+a) 

c3C(2:+2) = D 32C(2j+2) - -u  3C(2J+2) 

x = ~ 

Fig. 2. Scheme of the zoned reactor. A, active zones; 
I, inactive zones. 

k u2 iv2 1 
/3 = s + - - +  (33) 

h - ~ :  D t:2" 

Fig. 3 also shows the way in which the undeter- 
mined coefficients appear in successive boundary 
conditions. All of  these conditions can be written 
as an array except for the last 

C(2j+2) = 0 , x  = 0% t > / 0  (34) 

This condition also shows that 

A(2j+2) = 0 (35) 

and this result can be incorporated into the last 
two equations of  the array. The general problem 
of  seeking a solution is therefore best approached 
by matrix algebra; here we need the concentration 
at the outlet of  the reactor x = fb + a and there- 
fore seek the solution for B(2j+2) only. 

_ M ( 4 j + 3 )  
B(2j+2) (36) 

D ( 4 j + 3  ) " 

x = 0  

0 < x < a  

a < x < b  

b < x < b + a  

b + a < x < 2 b  

] b < x < ] b + a  

j b + a < x < ~  

A~ + BI = C~ 

C~ = A~ exp (3' +/3) x + B~ exp (7 -- 3)x 

Ax exp ~ a )  + B~ exp ( - -3a)  = A 2 exp (aa) + B2 exp ( - -an)  

(3' + ~)A1 exp (,6a) + (7 3)Ba exp (-- 3a) = (3' + a)A2 exp (aa) + (3' -- c0B 2 exp (-- ~a) 

C2 = Aa exp [(7 + a)x] +B2 exp [ (3 ' - -a )x]  

A 2 exp (c~b) + B2 exp (-- e~b) = A 3 exp (/3b) + B3 exp (-- ~3b) 

(3' + c0A 2 exp (ab) + (7 -- ~)B2 exp (-- ab) = (7 + 3)A3 exp 3b + (3' -- {3)B3 exp -- 3b 

C3 = Aa exp [(7+13)x] + B 3  exp [(3'--l~)x] 

C4 = A4 exp [ ( 7 + a ) x ]  + B ,  exp [ ( 7 - - t 0 x ]  

A(z/+I) exp [3(]b + a)] + B(2i+1) exp [-- 3Q'b + a)] = A(2:+2) exp [a(/b + a)] + B(2S+2) exp [ a(jb + a)] 

(3' + 3)A(2~+~) exp [3(]b + a)] + ( 7 - -  3)Bt2j+~) exp [ 3(]b + a)] = (7 + a)A(2:+2) exp [a(jb + a)] + (3" a)B(2j+2) exp [ -  aUb + a)] 

C(zi+2) = A<z/+2) exp [(7 + a)x]  + B(z/+; > exp [(7 -- a)x] 

A(2j+2) = 0 

Fig. 3. Laplace transforms of the solutions for the zoned reactor together with the transforms of the boundary 
conditions expressing the equality of the concentrations and concentration gradients at the boundaries. 
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Here j = 0, 1,2 . . . .  is the number of active (or 
inactive) units for the given reactor, M is the aug- 
mented matrix and D is the appropriate deter- 
minant. For the system of equations, Fig. 2 and 
Fig. 3 

-- 2cO/3(4a/3) j 
M4j+3 = (37) 

S 

The general form for D rapidly becomes highly 
complicated. However, for the likely values of u, 
D and k 

a ~ /3 (38) 

and it is found that D(4y+3 ) is dominated by a 
single term 

D(4j+3) ~ -- (a +/3)~2j+1) exp [/3(/+ 1)a] x 

x exp [ - - a ( ] +  1)a]. (39) 

Finally, the Laplace transform of the response to a 
delta function is 

C(2j +2) = 

2c~ j s + 25} + + 5 /  e-(j+,,2 

xexP~D(J+ l)bexp_[(s+uZ]l/2 (j+ D 1/2 --a] 

( k 
x e x p - -  s + ~ - + ~ - ~ ]  D - i ~ -  j. (40) 

In order to simplify this expression the function 
before the exponentials may be expanded bearing 
in mind that 

Thus 

k u 2 
- -  ~ s + - - .  (41)  
h 4D 

[s + u2/(4D)] J/2 Is + k/h + u2/(4D)] (J+l)/2 4.i 2 

{[s + u~/(4D)] 1/2 _~ [S "t- klh + u21(4D)] v2}2j+l 

1 + ( j /2  + 1/2)  h [s + u2/(4D)] 

I + ( j /2  + 1/4)  
k 

his + u2/(4D)] (42) 

This quantity remains close to unity even though 
Q'/2 + 1/2) k/h [s + u2 /(4D)] may not be negli- 
gible. Therefore writing (j + 1)b = L and 

a/b = ~o (43) 
the fraction of active area in the reactor, we obtain 

= [(Pe)'r)] ( l - - a 0  c exp 

- - [ s ; ~ +  (e~))l/2 [(Pe)7")]1/2co} (44) 

Finally, at short times (long s) Equation 44 
reduces to 

= C ~  -- s + - - ~ r [  + 

+ 2h [s + (Pe)/(4r)] 1,2 [(Pe)r)] 1/2 (45) 

an expression which is identical to that derived 
from Equation 18 provided k/h in that expression 
is replaced by keo/h. At the first level of approxi- 
mation therefore the use of the semi-infinite 
model leads to values of the rate constant scaled 
by the fraction of the active area. 

3. Experimental 

The experiments were performed in the bipolar 
trickle tower illustrated in Fig. 1 of the previous 
paper [1 ]. The length of the reactor section was 
10.3 cm and this was packed with 14 layers of 
�88 inch graphite Raschig rings; each layer contained 
43 rings and the column diameter was 4.88 cm. 
The range of liquid flow rates was 200-600 cm 3 
min -1 and measurements were made for in- 
crements in volumetric velocity of  50 Cln 3 min-1. 

Measurements were made in 0.5 M sodium sul- 
phate containing 10-3M sulphuric acid. All the 
experiments have been made at room temperature 
with the AnalaR reagents dissolved in de-ionized 
water. A concentration pulse of copper ions was 
introduced in the entering stream across the cross- 
sectional area of the reactor by using additional 
copper electrodes shown in Fig. 1 [1]. The detec- 
tor (close spaced N-meshes) in the exit stream was 
maintained in the limiting current plateau for 
copper deposition. Because of the discontinuity of 
the trickle flow, the detector section was flooded, 
the level of the liquid being maintained ~ 1 mm 
above the electrodes by using a levelling vessel. 
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Measurements were made for inactive beds and for 
active beds when sufficient voltage was applied 
across the reactor to lead to copper deposition on 
each of the bipolar layers (2 V per unit cell). Tran- 
sients were either recorded directly on an X-Y 
recorder or acquired on-line to a PDP-11-50 com- 
puter via a Tektronix 4010-10 terminal. Data 
analysis was carried out with the same machine. 

4. Results and discussion 

Fig. 4 shows two typical responses, one for an in- 
active (I) and one for an active (A) bipolar trickle 
reactor. It can be seen that there is considerable 
tailing as compared to the response which would 
be predicted for the simple semi-infinite or infinite 
channel models (Equations 13 and 19) and this 
immediately suggests the presence of the 'dead 
zones' of a slow moving phase. Data such as those 
in Fig. 4 have frequently been analysed by evalu- 
ating the moments of the curves [12]. This 
method has the advantage of leading to simple 
expressions for each model and moreover does not 
require the inversion of the transform since 

[dC'~ fo;C(t) dt 
--t~ss]~o - f?c(t)dt = t  (46) 

I 0.100, 

C/C ~ (s -I) 

0.075 

0.05C 

0.o~5 

o/ 
0 5 10 15 20  25 30 

t(s) 
Fig. 4. Experimental response curves for an inactive (I) 
and an active (A) bipolar trickle reactor. C amplitude of 
the response; C ~ area under the response curve for the 
inactive bed. 

and 

( dZ~l (dCt2 

__ ~ 2 _.~ O 2. 

fot2C(t)dt 
? C(t)dt 

(47) 

However this method is subject to considerable 
error when there is tailing (such as in short packed 
beds and reactors with trickle flow, etc.). For this 
reason we have used nonqinear regression methods 
throughout this investigation, the judgement for 
successive refinement of the parameters being 
based on the minimization of the standard error of 
fit. Fig. 5a and b show one experimental transient 
compared to the best achievable fit for the semi- 
infinite and infinite dispersion models, Equations 
19 (setting k = 0) and 13. 

The tailing will again be apparent and this is 
clearly inconsistent with the use of such models. 
Fig. 6a and b give derived data of the Peclet 
number (Pe) and residence time (r) as a function 
of the film Reynolds number (Re)f. 

It can be seen that the data are not very sensitive 
to the nature of the boundary conditions, that is, 
the behaviour is dominated by the mixing within 
the reactor. Fig. 5c shows the fit of an experi- 
mental transient for the active bed to Equation 19 
and Fig. 7 shows that the rate constant increases 
strongly with (Re)e indicating the importance of 
mass transfer control in active parts of bipolar 
structure. The data again are not strongly depen- 
dent on the boundary conditions. 

For more complicated models fitting procedures 
to the data in real time are hardly feasible in view 
of the excessive amount of computation required. 
In these cases it is preferable to Laplace transform 
the experimental transient and fit this directly to 
the Laplace transform of the solution required. 
Numerical inversions of the transform may be 
carried out with the particular values. The need 
for this procedure can be seen by comparing 
Equations 29 and 30 with Equation 28. Fig. 8 
illustrates such a fitting procedure; the fit is 
apparently excellent but it must be born in mind 
that the procedure emphasizes data at long time 
(short s). For this reason this method is particu- 
larly suitable in those situations where there is 
tailing. 

Fig. 9 shows that the model based on fast and 
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Fig. 5. (a) Fit of semi-infinite dispersion model, Equation 
19 (k = 0) to the experimental response curve for the 
inactive bed. (b) Fit of infinite dispersion model, 
Equation 13, to the experimental response curve for the 
inactive bed. (c) Fit of semi-infinite dispersion model, 
Equation 19, to the experimental response curve for the 
active bed. C, amplitude of the response curve; C O area 
under the response curve. 
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Fig. 6. Effect of boundary conditions on (Pe) and r. (a) Relation of (Pe) to (Re)e; (b) Relation of r to (Re)g. �9 semi- 
infinite, o infinite channel model. 
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Fig. 7. Effect of boundary conditions on rate constant. 
Data analysis performed in the Laplace plane; Equations 
16 and 18; �9 semi-infinite, o infinite channel model. 

slow moving phases can account fully for the 
experimental response for trickle flow. 

Figs. 10a and 10b show the derived mixing para- 
meters as a function of  (Re)~. It can be seen that 
the extent of  the fast phase is always large as com- 
pared to that of  the stagnant regions and that the 
relative extent of  the stagnant region decreases 
with increasing film Reynolds number. The Peclet 
number o f  the fast phase, Fig. 10b, is appreciably 
larger than the values derived for the semi-infinite 
and infinite dispersion models and the trends with 

C 

0.68 

0.45 

0.22 

0 
0.01 

�9 �9 �9 �9 expe r imen t  

0.16 0.33 0 .50 0.66 0.83 0.99 
s (s -t) 

Fig. 8. Fit of semi-infinite dispersion model, Equation 19, 
(k = 0) to the experimental response curve in the Laplace 
plane. C' amplitude of the response curve normalized by 
the area under the response curve and transformed into 
the Laplace plane; s the Laplace variable. 

7/C ~ (s -t) 
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A 
0.066 l ~ ooo model 

0 7 I I I I I I 

2,4 8.4 14.4 20.4 26.4 32.4 38.4 
t(s) 

Fig. 9. Numerically inverted fit of semi-infinite model 
with fast and slow moving phases, Equation 28 to the 
experimental response curve in the Laplace plane. C 
amplitude of the response curve; C O area under the 
response curve; t time (s). 

increasing (Re)f are also in different senses. This is 
not  surprising since the Peclet numbers derived 
from the simple dispersion models represent an 
average of  all mixing processes such as mixing in 
the fast phase and exchange between fast and slow 
phases. It was again found that changes in the 
boundary conditions for this model had only 
minor effects; an infinite model shows slightly 
bigger values o f  k'S/A 2 and k'S/A 1. 

The rate constant k2/h, derived for reaction in 
the fast moving phase, Equation 32, is found to be 
similar to that deduced from simple dispersion 
models, Fig. 7, while the rate constant k4/h in the 
slow moving phase is found to be virtually zero. As 
the major part of  the slow moving phase probably 
consists of the solution held by the meshes be- 
tween adjacent layers of  rings this indicates that 
reaction over the end positions of  the rings does 
not contribute substantially to the performance of  
the reactor and this is in agreement with data de- 
rived in the previous paper [ 1 ] from current-  
potential curves. Furthermore the value of  the 
average rate constant derived by the tracer method, 
i.e. k m = k at the upper limit of  (Re) used in the 
experiments is 2 x 10 -3 cm s -1 ; the values derived 
from current-potential curves, extrapolated to 
the same value of  (Re)~ are ~ 3.5 x 10 -3 cm s -1 . 
This discrepancy is probably mainly due to the 
fact that only part of  the total area is used for the 
reaction. Equation 45 derived for the zoned re- 
actor model shows that the first approximation for 
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Fig. 10. Exchange between fast and slow-moving phases, Equation 28. k '  mass-transfer coefficient between fast and 
slow-moving phases (em s -t ); S contact area per unit length between fast and slow moving phases;A~ and A 2 extents of 
the fast (1) and slow (2) moving phases; (b) Relation of (Pe) to (Re)f, Equation 28. (Pe) the Peclet number for the fast 
moving phase. 

the rate constant is the true value multiplied by 
the fraction of  reactive area. The use of  this 
equation therefore does not  allow the separate 
evaluation of  k/h and co and even the more com- 
plete Equation 44 is not  very sensitive to the 

separate values of  k/h and co. Fit t ing of  this equa- 
tion to the experimental  data gives a rather 

shallow minimum in the standard error of fit for 
the following values of  the parameter  11.16 > 

( P c ) >  10, 11 < r <  11.16 (s), 0.2 < co < 0 . 4  and 
0.23 > k / h  > 0 . 1 1  s -1 . Tilese values o f  co in turn 
give values of  k m which are very close to those 
determined from the current -potent ia l  curves and 
confirm that the model  of  the zoned reactor (in 
which a mass transfer controlled reaction takes 

place on a defined part of  the reactor surface) 
gives an adequate description of  the reactor. 

5. Conclusions 

It is shown that the performance of  a bipolar 
trickle reactor may be accurately described by a 
lumped parameter  model  based on a fast- and a 
slow-moving phase with exchange between the 
phases and dispersion in the fast phase. Neverthe- 
less simple dispersion models describe the be- 
haviour to a first approximation.  Tile data derived 
are not  very sensitive to the nature of  the bound- 
ary conditions chosen so that the behaviour is 
dominated by the reactor itself. 

The extreme inhomogeneity of  the reactions in 

these types of  bipolar reactors has been described 
by  a new zoned reactor model. This model  shows 
that a first approximation for the reaction rate 

constant is the true value multiplied by  the frac- 
tion of  area active in the reactor. Data of the re- 

action rate constants derived for this model  by 
applying the tracer method are in reasonable agree- 
ment  with values deduced from current-potent ia l  
curves and confirm the validity of  the model. 
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